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Asymmetric dehydration of b-hydroxy esters via kinetic resolution
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Abstract—Catalytic asymmetric dehydration of b-hydroxy esters via kinetic resolution has been investigated. The kinetic resolution
of rac-b-hydroxy esters in the presence of prolinol chiral ligand 2a and BrZnCH2CO2t-Bu can provide highly enantioenriched
b-hydroxy esters 3 and 5–11 with selectivity factors ranging from 15 to 42.
� 2007 Elsevier Ltd. All rights reserved.
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The dehydration of alcohol is one of the most funda-
mental organic transformation for which a large number
of catalysts and reagents have been developed.1 Consid-
ering the recent tremendous achievements in the field of
asymmetric syntheses, it is surprising that there are few
examples of enantioselective dehydration for alcohol
resolution, while the enantioselective oxidation and
acylation for alcohol resolution have long been the sub-
ject of intensive studies.2–4 Herein we report the first
example of highly enantioselective dehydration of b-
hydroxy esters via kinetic resolution using organozinc
reagent.

As a part of our program dealing with the asymmetric
syntheses of flavanone derivatives, we previously
reported an asymmetric synthetic method for the prepa-
ration of b-aryl-b-hydroxy esters with high enantioselec-
tivities. When BrZnCH2CO2t-Bu (1) was added to p-
anisaldehyde in the presence of prolinol chiral ligand
(2a), the reaction for 2 h provided b-hydroxy ester (R)-
3 in 32% yield with 98% ee along with the corresponding
cinnamate.5 Our continuing investigation have recently
found that shorter reactions gave higher yields and low-
er enantioselectivities as shown in Scheme 1. Reactions
for 1 h and 0.5 h produced (R)-3 in 66% yield with
36% ee and in 82% yield with 12% ee, respectively. Based
on the observed dependency of enantioselectivity on the
yield of 3, we envisioned that the major source of enan-
tioselection is asymmetric dehydration of the b-hydroxy
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ester via kinetic resolution, not the enantioselective
addition of Reformatsky reagent 1 to the aldehyde.

Initial studies to examine the possibility of the kinetic
resolution were carried out under the typical condition
with chiral ligand 2a shown in Scheme 1. When racemic
b-hydroxy ester 3 was treated with 2a (20 mol %) and
BrZnCH2CO2t-Bu (8 equiv) in refuxing THF at a con-
centration of 0.05 M substrate, we have found that the
kinetic resolution of rac-3 proceeded cleanly to allow
the isolation of b-hydroxy ester 3 and cinnamate 4 in
high yields.6 As shown in Table 1 and entry 1, at 59%
conversion, trans-cinnamate 4 was isolated in 43% yield
and the unconverted b-hydroxy ester (R)-3 was obtained
in 35% yield with 97% ee. Kinetic resolution in asym-
metric dehydration favoring (S)-3 proceeded with a
selectivity factor (s) of 22 (an average of three experi-
ments).7 The high activity of the catalyst also makes
effective resolutions with lower catalyst loading. The
kinetic resolution using 10 or 5 mol % of chiral ligand 2a
proceeded with a comparable selectivity factor (entries
2 and 3). However, the dehydration with 3 mol % of
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Table 1. Asymmetric dehydration of b-hydroxy ester 3
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Entry 1

(equiv)
2a

(mol %)
Conversiona

(%)
% eeb s (kS/kR) c

1 8 20 59 97 22
2 8 10 56 95 25
3 8 5 56 97 24
4 8 3 35 32 7
5 4 10 58 88 14
6 2 5 39 49 12

a Determined based on consumption of starting b-hydroxy ester sub-
strate by 1H NMR analysis of characteristic signals directly on the
crude mixture with hexamethylbenzene as an internal standard.

b The % ee of 3 is determined by CSP-HPLC.
c Selectivity (s) values represent an average of at least three experi-

ments, while conversion and ee value are for specific cases.
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chiral ligand 2a proceeded slowly to give (R)-3 with a
lower selectivity factor of 7 (entry 4). In the absence of
chiral ligand 2a, the dehydration did not occur for pro-
longed reaction time under analogous conditions. Next,
we turned our attention to the influence of the organo-
zinc reagent on the enantioselectivity. The use of 4 equiv
of BrZnCH2CO2t-Bu (1) in the presence of 10 mol % of
chiral ligand 2a gave lower selectivity (entries 2 and 5).
The slow reaction using 2 equiv of 1 produced (R)-3
with a selectivity factor of 12 (entry 6). Also, the reac-
tion using BrZnCH2CH2CH2(CH3)2 or Et2Zn instead
of BrZnCH2CO2t-Bu did not provide the elimination
product 4 under the same reaction condition. Both nat-
ure and amount of organozinc reagent were found to be
critical for the enantioselective dehydration of b-hydr-
oxy ester.

To gain an insight into the effects of chiral ligand and
substrate on selectivity, we have conducted a brief sur-
Table 2. Asymmetric dehydration of b-hydroxy esters 5–11

CO2t-Bu

RTHF
reflux

2a (5 mol%)

(

R OH

1 (8 equiv)

rac-5-11

Entry R Product Time (h)

1 m-MeO–Ph 5 1.0
2 p-BnO–Ph 6 1.0
3 p-Ph–Ph 7 1.5
4 1-Naph 8 1.5
5 p-Me–Ph 9 1.0
6 p-Cl–Ph 10 1.0
7 (E)-PhCH@CH 11 1.5
8 PhCH2CH2 12 2.0

a Determined based on the consumption of starting b-hydroxy ester substra
mixture with hexamethylbenzene as an internal standard.

b Isolated yields of unconverted substrates.
c The ee values of 5–11 are determined by CSP-HPLC. Absolute configuratio
d Selectivity (s) values represent an average of at least two experiments, whil
vey of different forms for those compounds. Two related
prolinol chiral ligands 2b and 2c having different N-alkyl
groups were prepared by the stereoselective nucleophilic
substitution of N-(a-bromo-a-phenylacetyl)-LL-proline
ester and subsequent reduction.5,8 With 8 equiv of 1
and 5 mol % of chiral ligand, the reaction of N-(S)-1-
phenethylated ligand 2b gave a modest level of selectiv-
ity (s = 5) relative to 2a, while N,N-dibenzylated chiral
ligand 2c produced no elimination product. These inves-
tigations indicated that subtle N-alkyl group modifica-
tions of chiral ligand can lead to substantial variations
in reactivity and enantioselection. In order to examine
the reactivities of OH protected b-hydroxy esters, we
have prepared b-acetoxy and b-trimethylsilyloxy esters
of 3.9 Both reactions of two modified esters under the
analogous condition with chiral ligand 2a gave no elim-
ination product and the esters are quantitatively recov-
ered. The preliminary results imply that both OH
bond of substrate and NH bond of chiral ligand play
important roles in the formation of reactive inter-
mediate, which might be formed by action of excess
BrZnCH2CO2t-Bu as a base.
We then initiated investigations into the reaction’s scope
with chiral ligand 2a. For convenience, most reactions
were performed with 5 mol % of 2a and 8 equiv of
BrZnCH2CO2t-Bu. As shown in Table 2, the kinetic res-
olution with chiral ligand 2a provided excellent levels of
asymmetric induction with a variety of b-aryl-b-hydroxy
esters 5–10. Most reactions reached 53–59% conversion
after 1–1.5 h with the selectivities ranging from 15 to 42.
Our most impressive results were obtained with b-p-phen-
ylphenyl-b-hydroxy ester 7, affording a krel of 42 (entry
3). Thus, the unconverted b-hydroxy esters (R)-5–10
with 98–93% ee were obtained in 41–32% isolated yields.
OH

CO2t-Bu
+

CO2t-Bu

R

R)-5-11

Conversiona % (% yield)b % eec s (kS/kR)d

55 (39) 95 23
58 (32) 98 35
54 (36) 96 42
59 (32) 93 15
55 (37) 93 28
57 (33) 98 22
53 (41) 95 31
— — —

te by 1H NMR analysis of characteristic signals directly on the crude

ns are assigned by the sign of optical rotation of the isolated products.
e conversion and ee value are for specific cases.
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The high selectivity and high activity of this catalyst
enabled us to successfully perform a resolution of b-hydr-
oxy esters on a multigram scale. Additionally, to our
delight, the resolution of b-(E)-styryl substituted ester
11 gave a high level of selectivity (entry 7). At present,
R is limited to the aryl and styryl groups. When R
was an aliphatic group (R = PhCH2CH2), no dehydra-
tion occurred under the same reaction condition and
rac-12 was quantitatively recovered (entry 8).

In summary, we have developed the first efficient cata-
lytic method for the asymmetric dehydration of b-hy-
droxy esters via kinetic resolution. Asymmetric
synthesis of b-hydroxy ester by enantioselective dehy-
dration is conceptually novel and may ultimately lead
to new catalysts with higher selectivity and broad syn-
thetic utility. Efforts are currently underway to provide
detailed mechanistic insight into the catalytic cycle.
The methodology of the present work should also be
applicable to asymmetric syntheses of flavanone
derivatives.
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